

RISE WITH EDUCATION

NAAC REACCREDITED - 'A' GRADE

SIES College of Arts, Science and Commerce (Autonomous) Affiliated to University of Mumbai

Syllabus under NEP - June 2023

Department of Mathematics Programme: B.Sc. Sem: I and II

Courses offered in FYBSc

Choice Based Credit System (CBCS) with effect from the academic year 2023-24

Contents:

- 1. Course structure with credits and Lectures/ Week
- Consolidated Syllabi with Course Outcomes
 2.1 Core Course: Mathematics Theory-Semester 1
 - 2.2 Core Course: Mathematics Theory-Semester 2
- 3. Scheme of Evaluation

Туре	Sem	Course Name/Course Code	Credits	L/P(per week)
Core	Ι	Differential Calculus of 1 variable	4	3L+1P
		Unit 1: Properties of Real Numbers and functions of 1 variable		
		Unit 2: Differentiability of functions of one variable and Mean ValueTheorems		
		Unit 3: Applications of Derivatives		
	Π	Algebra and its applications	4	3L+1P
		Unit 1: Integers and divisibility		
		Unit 2: Functions and Equivalence relations		
		Unit 3: Cryptography		
Note: 1P	Note: 1P = 2 hours, 1L = 1 hour, 1T=1 hour			

1. Course structure with credits and Lectures/ Week

2. Consolidated Syllabi with Course Outcomes Semester 1

2.1 Core Course: Mathematics

Total credits : 4 Theory : 3 credits Practicals: 1 credit

This Core course is offered to students of BSc in semester I , who have chosen Mathematics as Major/ Minor subject

Course Name: Differential Calculus of one variable. Credits: 3 Type: Theory Course

Expected Course Outcomes

On completion of this course, students will be able to

- 1. State definitions, propositions and prove important results based on Supremum, Infimum, bounded sets, properties and inequalities of real numbers, limit, continuity, differentiability.
- 2. Apply various properties, results and inequalities to solve problems on intervals, neighbourhoods, boundedness, derivatives of functions, plotting graphs of functions, apply derivatives to solve problems on Maxima-Minima, increasing and decreasing functions.
- 3. Determine continuity of a function at a point or on intervals and distinguish between the types of discontinuities at a point, Identify bounded and unbounded sets, analyse if a result is applicable to solve a problem. derivatives and related terms, Plot graphs of standard functions and comment on continuity

	1	
Pre-requisites:	Derivatives, functions of one variable, graphs of functions.	
Unit I	Real Numbers and functions of 1 variable1	5 Lectures
	 Real Numbers and functions of 1 variable The set of real numbers, Order property of real numbers, properties of Absolute Value function Intervals and neighbourhoods in <i>R</i>, Hausdorff property Bounded sets in the set of Real numbers, Supremum and infimum, Basi results: Continuum property (1.u.b. Axiom-statement) and consequences Archimedean property and its applications. Real valued Functions of one variable: Domain, Range 	

	• Graph of a function. Examples : Constant function, Identity function,		
	Absolute value, Step function, Floor and Ceiling functions,		
	Trigonometric functions, Linear and Quadratic functions and their		
	graphs. Graphs of functions such as $x^3, \frac{1}{x}, \frac{1}{x^2}$, log(x), a^x and e^x . (To be		
	done in practical 0.)		
	• ϵ - δ definition of limit of a function, Evaluation of limit of simple		
	functions using the definition, Uniqueness of limit if it exists, Algebra of		
	limits, Limit of composite function		
	• Sandwich theorem, Left hand, Right hand limits, Non-existence of limit		
	• Infinite limits and Limits at infinity.		
	• Continuity of a real valued function at a point in terms of Limits		
	Continuity of a real valued function on a set in terms of Limits,		
	examples, Continuity of a real valued function at end points of domainAlgebra of continuous functions		
	• Discontinuous functions, examples of removable and essential		
	discontinuity		
Unit II	Differentiability of functions of one variable and Mean15 LecturesValueTheorems15		
	Properties of continuous functions on a closed and bounded interval.		
	• Definition of Derivative of a real valued function of one variable at a point.		
	 Differentiable functions are continuous but not conversely 		
	 Algebra of differentiable functions, Chain Rule for derivative of a 		
	composite function (statement only)		
	 Derivative of inverse functions, Implicit differentiation (only examples) 		
	• Higher order derivatives of some standard functions		
	• Leibnitz rule		
	• Geometric interpretation of derivative		

Unit III	Differentiability and Applications	15 Lectures
	The Mean Value Theorems	
	Rolle's theorem, examples and applications	
	Lagrange's mean value theorem, examples and applications	S
	Cauchy's mean value theorems, examples and applications	
	• Indeterminate forms: L'Hospital's Rule (without proof) as an of CMVT. Examples.(Problems in Practicals)	n application
	• Taylor's theorem (without proof). Taylor's polynomial and	applications.
	• Applications of first and second derivatives:	
	Monotone increasing and decreasing function, examples, us	ing
	derivatives. Concave, Convex functions, Points of Inflection	1
	• Definition of local maximum and local minimum, First deri	vative test
	for extrema, Necessary condition for extrema, Stationary po	ints, Second
	derivative test for extrema, examples	
	Global maxima and minima	

Course Name: Mathematics Practicals 1 Credits: 1

Expected Course Outcomes

On completion of this course, students will be able to

- 1. Apply various definitions, results and methods learnt in two theory courses to solve problems.
- 2. Test validity of mathematical statements using results and constructing appropriate examples

Practical No.	Title
01	Graphs of real valued functions of one variable, use of a mathematical software to plot graphs. Identifying left, right limits of functions at a point. Discussing continuity using graphs.
02	Properties of real numbers, absolute value, Archimedian property, bounded sets
03	Limit and Continuity of a function. Discontinuous functions
04	Finding derivatives by definition, Use of Leibnitz rule
05	Problems based on MVTs, L' Hospital's rule
06	Problems based on applications, Maxima-Minima, increasing decreasing functions, concavity and points of inflection
07	Problems based on Taylor's theorem, finding Taylor's linear and quadratic polynomial approximation

References

- 1. Ajitkumar, S. Kumaresan, A Basic Course in Real Analysis, CRC press, 2014
- 2. R. G. Bartle- D. R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 1994.
- 3. James Stewart, Calculus, Third Edition, Brooks/ cole Publishing Company, 1994
- 4. R. R. Goldberg, Methods of Real Analysis, Oxford and IBH, 1964.
- 5. T. M. Apostol, Calculus Vol I, Wiley & Sons (Asia) Pte. Ltd.
- 6. G. B. Thomas, R.L. Finney ,Calculus and analytic geometry, 3rd Edition onwards.
- 7. Ghorpade, Limaye, A Course in Calculus and Real Analysis, Springer International Ltd, 2000

Online Resources

- <u>https://openstax.org/details/books/calculus-volume-1</u>
 <u>https://archive.org/details/Calculus10thEditionH.Anton</u>

<u>Semester II</u>

2.2 Core Course: Mathematics(Semester II) Total credits : 4 Theory : 3 credits Practicals: 1 credit

This course is offered to students of BSc in semester II, who have chosen Mathematics as Major/ Minor subject

Course Name: Algebra and its applications Credits: 3 Type: Theory course

Expected Course Outcomes

On completion of this course, students will be able to

- 1. State definitions of divisibility of integers, GCD, prime, congruence, function and its different types, binary operation, relation and its different types, State the well ordering property, induction theorems, fundamental theorem of Arithmetic, State and prove results based on divisibility, primes, congruences, bijectivity of functions, binary operations, partitions and equivalence relations, primitive roots
- 2. Apply various results to find GCD, prove propositions based on induction theorems, solve problems based on congruences, check bijectivity of functions, encryption and decryption
- 3. Identify invertible functions, binary operations, partitions and equivalence relations

Pre-requisites:	Basic Set Theory and Logic	
Unit I	Integers and divisibility	15 Lectures
	 Statements of well-ordering property of non-negative integers, Principle of finite induction (first and second) as a consequence of Well-Ordering Principle. Divisibility in integers, division algorithm, greatest common diviso (g.c.d.) and least common multiple (l.c.m.) of two non-zero integers basic properties of g.c.d. such as existence and uniqueness and that the g.c.d. of a, b∈Z can be expressed as ma + nb, m, n∈Z, Euclideat algorithm. Euler's phi function and its properties 	

	 Primes, Euclid's lemma, Fundamental Theorem of arithmetic, The set of primes is infinite, there are arbitrarily large gaps between primes. Congruence, definition and elementary properties, Results about linear congruence equations. Examples. 	
Unit II	 Functions and Equivalence relations Definition of a function, domain, co-domain and range of a function, composite functions, examples, Direct image f(A) and inverse image f⁻¹(B) for a function f; Injective, surjective, bijective functions; Composite of injective, surjective, bijective functions when defined; invertible functions, bijective functions are invertible and conversely; examples of functions including constant, identity, projection, inclusion; Binary operation as a function, properties, examples. Equivalence relation, Equivalence classes, properties such as two equivalence classes are either identical or disjoint, Definition of partition, every partition gives an equivalence relation and vice versa. Congruence is an equivalence relation on Z, Residue classes and partition of Z. 	
Unit III	Cryptography15 Lectures• Order of an integer and Primitive Roots.• Basic notions such as encryption (enciphering) and decryption (deciphering), Cryptosystems, symmetric key cryptography, Simple examples such as Shift cipher, Affine cipher, Hill's cipher, Vigénere cipher .• Concept of Public Key Cryptosystem; EIGamal cryptosystem, RSA Algorithm. An application of Primitive Roots to Cryptography.	

Course	Name: Mathematics Practical 2	Credits: 1
Expected Course Outcomes		

On completion of this course, students will be able to

- 1. Apply various definitions, results and methods learnt in the theory course to solve problems.
- 2. Test validity of mathematical statements using results and constructing suitable examples

Practical No.	Title
01	Set theory and logic
02	Division Algorithm and Euclidean algorithm, Primes
03	Fundamental Theorem of Arithmetic, Euler's Phi function, Congruences
04	Functions (direct image and inverse image), Injective, surjective, bijective functions, finding inverses of bijective functions
05	Equivalence relations and Partitions
06	Cryptosystems (Public Key) and primitive roots
07	Cryptosystems (Private Key)

References

- 1. J. P. Tremblay & R. Manohar.(1974).*Discrete Mathematical Structures with Applications to Computer Science*, McGraw Hill
- David M. Burton.(2015). *Elementary Number Theory*, McGraw Hill Education (India) Private Ltd.
- 3. Norman L. Biggs.(1989). Discrete Mathematics, Clarendon Press, Oxford
- 4. I. Niven and S. Zuckerman. (1972). Introduction to the theory of numbers, Wiley Eastern
- 5. Kenneth Rosen.(1999). *Discrete Mathematics and its applications*, Mc-Graw Hill International Edition, Mathematics Series.
- 6. William Stalling. Cryptology and network security.
- 7. Larry J. Gerstein.(2012). Introduction to Mathematical Structures and Proofs, Springer-Verlag, New York

3. Scheme of Evaluation:

33% to 50% Internal Assessment through continuous evaluation in each course of each semester Remaining weightage to Semester End Examination in each semester
